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Minh Duong-van
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ABSTRACT

We study a recursion relation that manifests two distinct routes to turbulence, both
of which reproduce commonly observed phenomena: the Feigenbaum route, with
period-doubling frequencies; and a much more general route with noncommensurate
frequencies and frequency entrainment, and locking. Intermittency and large-scale
aperiodic spatial patterns are reproduced in this new route. In the oscillatory instability
regime the fractal dimension saturates at DF = 2.6 with imbedding dimensions while in

the turbulent regime DF saturates at 6.0.

*This work was performed under the auspices of the U.S. Department of Energy by the
Lawrence Livermore National Laboratory under contract number W—7405-ENG-48.



1,2

Experimental evidence supporting Feigenbaum's route to turbulence has become

richer since 1978. In this route, nonlinear systems manifest chaos via period- doubling

3,5 6

bifurcations. For example, Rayleigh-Bénard systems with low and intermediate

Prandtl numbers exhibit this route. In detailed experiments on low- aspect-ratio
Rayleigh-Bénard cells, Giglio et a1.6 saw four period doublings and obtained values of §

that agree with I-‘eige:nbaum's1 universal & = 4.6692 within their experimental error.

When the aspect ratio is large, however, very different behavior is t‘oxmd."‘11 As
the stress parameter (the Rayleigh number, in the case of Rayleigh-Bénard systems) is
increased, cascades of instabilities are obscrved, each step of which adds new

3,8,10

complications to the convective behavior. Unstable patterns are formed and

temporal cha058 sets in, with alternating random bursts and quietness: this is called

intermittency.3'8

Noncommensurate frequencies arise in the Fourier spectrum of the
chaotic variable, and entrainment and locking occur as the stress parameter is varied.3'7'8

In this paper we show that both these routes to turbulence, with all the properties
just described, can be simply simulated with a quadratic map at each site of a spatial
lattice and with a coupling between nearest-neighbor sites. This new route leads to a
fractal dimensions of 2.6 at the oscillatory instability regime and 6.0 at the turbulent
regime.

Let u represent the chaotic variable: it may be a velocity component or a
temperature fluctuation of the system being studied. We build a lattice of sites with a
quadratic map u - Q(\,u) at each site, and allow interaction between nearest neighbor
sites through a coupling parameter g. We assign a random value of u to each lattice site,

and let the lattice evolve in time steps 'cn =nt,n=1, 2, 3 ..., when Tt is the Poincaré time

of the system. We find the same behavior for all quadratic Q(\,u): for example,

Q()‘-vu) = Xll(l—U), (la)



Q(\,u) = Asin(mu) (1b)

give the same behavior. For simplicity, we use the logistic map, Eq. (1a), in this study. In

one dimension, we use the prescrip!:ionp"l5

(2)

un+1(m) = Xun(m){l - un(m)] + g[un(m+1) + un(m—l) - 2un(m)],

where the index m spans the N lattice points m =1, 2, ...,N.

With Eq. (2) two routes to turbulence are observed, in which the Feigenbaum route is
seen as a special case.

For small g (e.g., g = 0.001), when \ approaches the accumulation point xw. the
Fourier spectrum of the time sequence u n(m) for a particular m shows period-doubling
bit‘urcaﬂ:ior:s.1 (With k@ = 3.569 and g = 0, for example, we obtain a period-doubling
Fourier spectrum that agrees well with that obtained by Giglio et a1.6] As g increases,
the peaks in the Fourier spectrum become wider. In our study, this width increase is a
consequence of the dissipative term controlled by g. As \ increases to 4 (for any value of
g) the spectrum becomes flat and chaotic.

Only in special cases (such as in Rayleigh-Bénard systems with low aspect ratio)
does the turbulence observed in nature follow the Feigenbaum route. More generally (as
in Rayleigh-Bénard systems with large aspect ratios), the i;xstabilities and turbulence

show richer behaviors.7' 11

One observes noncommensurate frequencies in the Fourier
spectrum and the phenomena of frequency entrainment and locking; complex
quasi-periodic, aperiodic, and intermittent time histories of the values of chaotic
variables at individual points in the system; and similar time variations in the spatial

patterns formed in certain systems.3 By iterating Eq. (2) or (in the case of the spatial



patterns) with values of g away from zero, we can reproduce all these phenomena,
provided we restrict \ to the Feigenbaum simple fixed points region 1 <\ < 3.
We built a periodic one-dimensional lattice with N = 2000, and recorded the time

evolution and the corresponding Fourier transform of u (13) for times up ton = 212

and
for a variety of values of \ and g (m is arbitrarily chosen equal to 13).

For illustration, we choose g = 0.915 and vary \ from Xmax = 1.621 to }"min = 1.0.
Figure 1(a) (. = 1.62) shows the Fourier spectrum and the time history of u - This broad
spectrum, with its intermittent bursts and quietness, appears to correspond to
observations described in Ref. 3. In Fig. 1(b) (A = 1.52) the frequency peaks become
narrower, and the amplitude variations become smaller.

In Fig. 2(a) (A

the fixed point (u*

1.449), the time history shows that the system attempts to settle to

1 — 1/\) after some transient time. The competition between the
approach to the fixed point (due to \) and the diffusion away from the fixed point (due to
g) gives rise to the instability observed. In Fig. 2(a) (A = 1.449) the Fourier spectrum
exhibits noncommensurate frequencies.

As \ is decreased further, the frequencies are entrained (Fig. 2(b) A = 1.49) and
locked (Fig. 3(a) \ = 1.48).

We generate visible patterns with the two-dimensional by use of a new graphical

technique, 17

scaling the u(j,k) to a 0-to-256 linear gray scale.

In the simulation of these patterns, the u(j,k) are assigned initial (n = 1) random
values between 0 and 1, resulting at most in small-scale random patterns at that time. As
time increases, these patterns disappear into a highly uniform sea (when w approaches
the fixed point); eventually, however, large-scale structures grow, evolve, and
temporarily or permanently stabilize. Fig. 4 shows the pattern developed in a 50x50
lattice for \ = 1.5, g = .905.

We have chosen to study only the simple fixed points region 1 < \ < 3 of the logistic

map, Eq. (2a). (In other regions, only random patterns are observed.) As long as g = 0,



this branch produces uninteresting behavior: the u approach the fixed point u* =1 - 1/\.
Without g, there is no instability in this region, and no patterns. When we turn g on,
however, depending on the values of g and \, we may we get rich and interesting
behaviors clearly, in Figs. 1 and 2, g acts to keep the u, from their tendency toward the

fixed point. Thus instabilities appear to result from a competition between tendencies

towards the fixed points and away from it, and the time history intermittency

phenomenon (Fig. 1a) is, in fact, a consequence of this competition.

Influenced by the recent measurements of the fractal dimension in periodically
excited air jet by Bonetti et a.l.17 and in an electron-hole plasma in Ge by Held and
J et'fries.18 we calculate the fractal dimension of our system in the oscillatory instability

regime (Figs. 2b, 3a) and turbulent regime (Fig. 1a) and we found D_ = 2.6 and 6.0

F
respectively. From the set of data un(m) where n = 3000 and the lattice site m varies

miD-1, .
u Yin a

from 1 to 500, we constructed m <" D + 1 vectors G = (um, ufml .
D-dimensional phase space; D is referred as the imbedding dimension of the reconstructed
phase space G. Note that the coordinates in our reconstructed phase space correspond to
different lattice sites and not to time delays. Next, we compute the number of points on
the attractor, N(R), which are contained in a D-dimensional hypersphere of radius R. If
one considers the fractal dimension a critical index of a critical phenomenon, one expects
at the critical point, N(R) to scale as RDF where DF is the fractal dimension of the
attractor. This procedure is carried out for consecutive values D = 2,3,4 ..., to insure the
D to be sufficiently large. We found that for g = .915, 1.47 < \ < 1.49 (a.rou-nd the phase
lock regime) the fractal dimension is roughly 2.6. In the turbulent regime, g = .915, \ =
1.62, DF = 6.0. The DI-‘ for the first case stabilizes to 2.6 at D = 20 while for the latter
case, DF is hard to calculate even at D = 30. This difficulty was also experienced by
Bonetti et a.1.17 and Atten et al.19 The most interesting phenomenon observed here is the

existence of a parametric transition of the DF from 0.5at N\ < 1.47toD_ = 2.6 at 1.47 <

F
N < 1.49. Figure 5 shows DF versus N at a given g. The universal wvalue of



DF ~ 2.6 observed experimentally is a consequence of the quadratic property of the
logistic map. We have repeated the calculation with a 2-dimensional lattice, and varied
the time delay and also the lattice size to 2000. Within the errors, the fractal dimension
does not change significantly. In this paper, the errors are simply estimated by fitting to
the slopes of the Log N(R) versus Log R curves. We observe a change of the width of the
plateau at DF =~ 2.6 with the size of the lattice. For 300 sites, the plateau width spans
from 1.46 < A < 1.51 and for 2000 sites, the plateau width narrows down to 1.48 < \ <
1.49. From the trend, one might speculate that in the continuum limit, the transition
from DF = 0 to a large fractal dimension (in the turbulent regime) might be continuous.
Further investigations of this phenomenon and the detailed errors calculations are
presently carried out.

In conclusion, we note that the variety of phenomena experimentally observed in the
approach to turbulence has brought forth a variety of explanations: for example,

intermittency can be e:cha,ined18

by the Lorenz model; the lock-in phenomenon can be
explained by the Flaherty and Hoppensteadt model.19 In our model, by putting the
quadratic map on the lattice with nearest neighbors coupling, we economically recover all
these phenomena. Furthermore, we have found that the common fractal dimension of 2.6
is a consequence of the quadratic map.

The author thanks P. R. Keller for the graphics used in this paper nd P. W. Murphy
for editorial assistance. He thanks his colleagues at Lawrence Livermore and Los Alamos
National Laboratories for numerous profitable discussions. Valuable suggestions and
commenls by C. Alonso, P. Carruthers, P. Cvitanovic and M. Feigenbaum are
appreciated. He also thanks the Aspen Institute for Physics for their hospitality and the

participants for stimulating discussions.
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FIGURE CAPTIONS

Figure 1. (Top to bottom: Fourier spectrum of u o Yo and enlargement of indicated
portion of un.) (a) g =0.915, A =1.62; (b) \ =1.52.

Figure 2. (Same plots as in Fig. 1.) (a) g = 0.915, \ = 1.499; (b) \ = 1.490.

Figure 3. (Same plots as in Fig. 1.) (a) g = 0.915, \ = 1.48; (b) \ = 1.00.

Figure 4. Patterns generated by a 50 x 50 lattice with \ = 1.50, g =.905 and n = 90.

Figure 5. Fractal dimension variation as a function of the paramcter N at a fixed
g = .915. Detailed features of the parametric transition at X\ = 1.47 should be

complemented by refering to Figs. 1a-3b.
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